2 вариант
1. Основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к плоскости основания, AD = DM = a=6. Найдите площадь поверхности пирамиды.
2. Основанием прямого параллелепипеда ABCDA1B1C1D1 является параллелограмм ABCD, стороны которого равны 8√2
и 16, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите:
а) меньшую высоту параллелограмма;
б) угол между плоскостью АВС1 и плоскостью основания;
в) площадь боковой поверхности параллелепипеда;
г) площадь поверхности параллелепипеда
Відповідь:
АВСМ - параллелограм
АВ || СМ
АВ = 2 см.
ВС = 3 см.
Пояснення:
Основания трапеции ВС и АД - параллельны. Пусть угол ВАМ = х, тогда и угол ВСМ = х. Из параллельности оснований трапеций следует, что в четырехугольнике АВСМ сумма углов ВАМ и АВС равна 180° и сумма углов ВСМ и АМС равна 180°. Значит
АВС = 180 - ВАМ = 180 - х
АМС = 180 - ВСМ = 180 -х
Следовательно углы ВАМ и ВСМ равны. Если в четырехугольнике АВСМ накрест лежащие углы равны то АВСМ - параллелограм.
У параллелограмма противолежащие стороны параллельны и равны.
Значит АВ || СМ.
АВ = СМ = 2 см.
ВС = АМ = 3 см.
Полученный треугольник имеет такую же высоту, как трапеция, и такую же среднюю линию, так как основание этого треугольника равно сумме оснований трапеции.
В данном случае диагонали равны и взаимно перпендикулярны. Поэтому равновеликий треугольник получается прямоугольным и равнобедренным. Его основание (гипотенуза) равно 16 + 24 = 40;
Значит, высота равна 20, а площадь 20*40/2 = 400;
такая же площадь у трапеции.