2 вариант
1). Треугольники АВС и АDС лежат в разных плоскостях и имеют общую сторону АС. Точка Р – середина стороны АD, точка К – середина DС.
а). Каково взаимное расположение прямых
РК и АВ?
б). Чему равен угол между прямыми РК и
АВ, если ∠АВС = 400 и ∠ВСА = 80?
ответ обоснуйте.
2). Дан пространственный четырехугольник АВСD, М и N – середины сторон АВ и ВС соответственно, Е ϵ СD, К ϵ D, DА : ЕС = 1 : 2, DК : КА = 1 : 2.
а). Выполните рисунок к задаче;
б). докажите, что четырехугольник МNЕК – трапеция.
Теорема: "(угол между пересекающимися хордами). Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг: α=(дугаАВ+дугаCD)/2".
В нашем случае пересекающиеся хорды - это диагонали трапеции.
Дуги АВ и CD равны, так как стягиваются равными хордами (трапеция равнобедренная).
Тогда градусная мера этих дуг равна 48°.
На эти же дуги опираются вписанные углы АСВ и ВDA.
Значит эти углы равны по 24°.
Углы АВС и ВСD равны 180°-24°=156°. (свойство трапеции).
ответ: углы трапеции <A=<D=24°, <B=<C=156°.
118°, 118°, 62°, 62°
Объяснение:
Дано: КМРТ - трапеция, МК=РТ, КТ=D (окружности), КР и МТ - диагонали, ∠РОТ=∠МОК=56°. Найти ∠К, ∠М, ∠Р, ∠Т.
Решение: ΔКМТ=ΔТРК, т.к. КР=МТ как диагонали равнобедренной трапеции, КМ = РТ по условию, сторона КТ - общая. Значит, ∠ОКТ=∠КТО.
∠КОТ=180-56=124°; ∠ОКТ=∠КТО=(180-124):2=28°.
ΔМОР; ∠МРО=∠ОМР=∠ОКТ=∠КТО=28° как внутренние накрест лежащие при МР║КТ и секущих МТ и КР.
∠КМТ=∠КРТ=90° как углы, опирающиеся на диаметр окружности.
∠М=∠Р=90+28=118°
∠К=∠Т=180-118=62° по свойству углов трапеции, прилежащих к боковой стороне