2. Якщо основа й кут, прилеглий до основи, одного рівнобедреного трикутника відповідно дорівнюють основі й куту, прилеглому до основи, іншого рівнобедреного трикутника, то такі трикутники рівні. Доведіть?
своим клиентам уведомление об инциденте безопасности, произошедшем ранее на этой неделе.
«24 ноября 2020 года компания Sophos была проинформирована о проблеме с разрешением доступа в инструменте, используемом для хранения информации о клиентах, обратившихся в службу поддержки Sophos», - сообщается в электронном письме, разосланном клиентам компании.
Скомпрометированная информация включает имена и фамилии клиентов, электронные адреса и номера телефонов. В пресс-службе Sophos подтвердили, что инцидент затронул данные только небольшого количества клиентов, но не привели точных цифр.
1) Малюємо коло з центром у точці О (довільна точка) paдiycy R.
2) Позначаємо на колі довільну точку А.
3) Циркулем вимірюємо довжину відрізку а.
4) Будуємо коло з центром у точці А радіуса а.
5) Точка перетину двох кіл позначається В.
6) Будуємо серединний перпендикуляр до відрізку АВ.
7) F - точка перетину відрізка АВ i серединного перпендикуляра.
8) Вимірюємо циркулем довжину відрізку hb.
9) Малюємо дугу з центром у точці F радіуса hb.
10) Позначаємо точку перетину дуги та серединного перпендикуляра Е.
11) Проводимо через точку Е пряму а (а ‖ АВ).
12) Позначаємо точки перетину прямої а та кола С та D.
13) Будуємо відрізки AC, AD, BD, ВС.
∆АВС та ∆ABD шукані трикутники.
Задача може мати 4 розв'язки, коли на середньому перпендикулярі з двох сторін можна відкласти відрізки, які дорівнюютъ hb i провести через них прямі а та b (а ‖ АВ, b ‖ АВ). Ці прямі перетинають коло у 4 точках. Задача може мати 3 розв'язки, коли одна з прямих а чи b може бути дотичною. Задача може мати 2 розв'язки, коли a i b є дотичними, або тільки одна з прямих а чи b перетинає коло у двох точках. Задача може мати 1 розв'язок, коли а чи b буде дотичною до кола
Объяснение:
своим клиентам уведомление об инциденте безопасности, произошедшем ранее на этой неделе.
«24 ноября 2020 года компания Sophos была проинформирована о проблеме с разрешением доступа в инструменте, используемом для хранения информации о клиентах, обратившихся в службу поддержки Sophos», - сообщается в электронном письме, разосланном клиентам компании.
Скомпрометированная информация включает имена и фамилии клиентов, электронные адреса и номера телефонов. В пресс-службе Sophos подтвердили, что инцидент затронул данные только небольшого количества клиентов, но не привели точных цифр.
Объяснение:
Дано: АВ; CD ┴ АВ; R - радіус описаного кола.
Побудувати: трикутник ABC.
Побудова:
1) Малюємо коло з центром у точці О (довільна точка) paдiycy R.
2) Позначаємо на колі довільну точку А.
3) Циркулем вимірюємо довжину відрізку а.
4) Будуємо коло з центром у точці А радіуса а.
5) Точка перетину двох кіл позначається В.
6) Будуємо серединний перпендикуляр до відрізку АВ.
7) F - точка перетину відрізка АВ i серединного перпендикуляра.
8) Вимірюємо циркулем довжину відрізку hb.
9) Малюємо дугу з центром у точці F радіуса hb.
10) Позначаємо точку перетину дуги та серединного перпендикуляра Е.
11) Проводимо через точку Е пряму а (а ‖ АВ).
12) Позначаємо точки перетину прямої а та кола С та D.
13) Будуємо відрізки AC, AD, BD, ВС.
∆АВС та ∆ABD шукані трикутники.
Задача може мати 4 розв'язки, коли на середньому перпендикулярі з двох сторін можна відкласти відрізки, які дорівнюютъ hb i провести через них прямі а та b (а ‖ АВ, b ‖ АВ). Ці прямі перетинають коло у 4 точках. Задача може мати 3 розв'язки, коли одна з прямих а чи b може бути дотичною. Задача може мати 2 розв'язки, коли a i b є дотичними, або тільки одна з прямих а чи b перетинає коло у двох точках. Задача може мати 1 розв'язок, коли а чи b буде дотичною до кола