А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
С = 60 град
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.