Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Запишем дано.
Нам задана равнобедренная трапеция ABCD.
Основания трапеции равны AD = a = 9 ед и BC = 4 ед.
Так как трапеция равнобедренная то боковые стороны между собой равны и мы можем записать, что AB = CD = c.
AD + BC = AB + CD;
так как AD = a = 9; BC = b = 4; AB = CD = c, запишем равенство:
a + b = c + c;
a + b = 2c;
9 + 4 = 2c;
Из полученного линейного уравнения находим значение боковой стороны с:
2c = 13;
с = 6,5 ед.
Для нахождения площади трапеции будем использовать формулу:
S = (p - c)√(p - a)(p - b), где p — полу периметр трапеции.
Найти полу периметр трапеции можно по формуле:
p = (a + b + 2c)/2;
Подставляем в формулу найденные значение длин сторон и находим полу периметр.
p = (9 + 4 + 2 * 6.5)/2 = (9 + 4 + 13)/2 = 26/2 = 13 ед.
Для нахождения площади трапеции все параметры найдены. Подставляем их в формулу и вычисляем:
S = (p - c)√(p - a)(p - b) = (13 - 6.5)√(13 - 9)(13 - 4) = 6.5 * √4 * 9 = 6.5 * √36 = 6.5 * √6^2 = 6.5 * 6 = 39 кв. ед.
ответ: 39 кв. ед.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.