Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
ΔАВС-равносторонний 1) ВК - в равностороннем ΔАВС- является и
АВ=ВС=АС=9√3 высотой и медианой
ВК-биссектриса
Найти: ВК=? 2) рассмотрим ΔАВК-прямоугольный
АВ=9√3, АК=1\2 АС=1/2·9√3=4,5√3=9/2√3
3) По Т.Пифагора: ВК=√АВ²-АК²=
= √(9√3)²-(9/2√3)²=
= √81·3-81/4·3=√729/4=27/2=13,5
ответ: 13,5