1. В равностороннем тр-ке углы равны по 60°. значит любой внешний угол тр-ка будет 180-60=120°. 2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см. 3. Задачу можно решить логически. В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°. Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ. Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.
2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см.
3. Задачу можно решить логически.
В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°.
Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ.
Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.
1) Диагонали квадрата перпендикулярны, равны и точкой пересечения делятся пополам. BD перпендикулярно MN, BD перпендикулярно AC, следовательно MN паралельно AC. треугольник DAC подобен треугольнику DMN по двум углам, AC : MN = DO : DB = 1 : 2.AC = BD = 19
MN = 2AC = 38
2) 15+5=20
3) угол CDE составляет 2 часть, ∠ADE - 7 таких частей, всего 9 частей. угол CDE = 90° : 9 = 10°. сумма острых углов прямоугольного треугольника 90°, тогда из треугольник CDE: угол DCE = 90° - угол CDE = 90° - 10° = 80°. Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда треугольник COD равнобедренный (CO = OD), значит углы при его основании равны: угол OCD = угол ODC = 80°.В треугольник OCD находим третий угол: угол COD = 180° следовательно 180° - 160° = 20° - угол между диагоналями.