2. Запишите, как обозначают, что точка D имеет абсциссу, равную −3, и ординату, равную 7.
3. На координатной плоскости отметьте точки A (−2; 3), B (3; −2), C (−1; 0), D (0; −1), E (−4; −1).
4. В какой четверти координатной плоскости находится точка:
1) A (2; 8); 3) C (1; −125);
2) B (−6; −2); 4) D (−168; 293)?Умоляю надо очень
1) используя т.Пифагора...
2) используя формулу для площади треугольника...
S = p*r, где р--полупериметр, r--радиус вписанной окружности
получается, что площадь прямоугольного треугольника = 5
радиусы вписанной в прямоугольный треугольник окружности отсекают на катетах квадрат)))
если обозначить оставшиеся части катетов (х) и (у) и вспомнить, что отрезки касательных, проведенных к окружности из одной точки, равны, то получим:
(х+1) + (у+1) + (х+у) = 10 --- периметр треугольника
2х + 2у = 8
х+у = 4
а площадь прямоугольного треугольника может быть вычислена как половина произведения катетов... S = 5 = (x+1)*(y+1) = xy + x + y + 1 = xy + 5
xy = 0 ---т.е. или х=0 или у=0 ---> треугольник не существует такой...