Пусть стороны оснований параллелепипеда равны x и 2x, а диагональ равна 3x. По теореме Пифагора диагональ основания (оно является прямоугольником со сторонами x и 2x) равна √x²+4x²=x√5. Теперь рассмотрим диагональное сечение параллелепипеда - прямоугольник, две стороны которого - боковые рёбра, а ещё две - диагонали противоположных граней. Нам известно, что диагональ параллелепипеда, которая будет диагональю этого сечения, равна 3x, одна из сторон - диагональ основания, равная x√5, а вторая сторона - боковое ребро, равное 4. Пользуясь теоремой Пифагора, составим уравнение, из которого найдём x. 9x²=5x²+16 (диагональ - гипотенуза прямоугольного треугольника, диагональ основания и боковое ребро - его катеты). 4x²=16 ⇒ x=2. Объём прямоугольного параллелепипеда - произведение трёх его рёбер, одно из которых равно 4, второе x=2, а третье 2x=4. Таким образом, V=4*4*2=32.
Тогда очевидно: угол ABM = α, ABC = 2α+β = 3/5π (угол правильного пятиугольника)
Из ΔABM угол AMB = π - 2α
из ΔBMN (тоже равнобедренного) угол при основании BMN = (π-β)/2
При этом углы AMB и BMN смежные и равны π.
Итого:
2α+β = 3/5π
π - 2α + (π-β)/2 = π
Из этих двух равенств β = π/5, а если потом подставить в первое, то и α = π/5.
По теореме Косинусов из ΔBMN
b² = a² + a² - 2 a · a · cos β
b² = 2 a² (1- cos β)
Делим все на b²
1 = 2 a² / b² · (1- cos β)
1/ 2 / ( 1- cos β) = a² / b²
ну и отношение a/b = 1/ √ ( 2 · ( 1- cos π/5) )
По теореме Пифагора диагональ основания (оно является прямоугольником со сторонами x и 2x) равна √x²+4x²=x√5.
Теперь рассмотрим диагональное сечение параллелепипеда - прямоугольник, две стороны которого - боковые рёбра, а ещё две - диагонали противоположных граней. Нам известно, что диагональ параллелепипеда, которая будет диагональю этого сечения, равна 3x, одна из сторон - диагональ основания, равная x√5, а вторая сторона - боковое ребро, равное 4. Пользуясь теоремой Пифагора, составим уравнение, из которого найдём x.
9x²=5x²+16 (диагональ - гипотенуза прямоугольного треугольника, диагональ основания и боковое ребро - его катеты).
4x²=16 ⇒ x=2.
Объём прямоугольного параллелепипеда - произведение трёх его рёбер, одно из которых равно 4, второе x=2, а третье 2x=4. Таким образом, V=4*4*2=32.