Площадь трапеции равна произведению полусуммы ее оснований на высоту.
У задачи есть два случая.
Первый случай, когда основание, равное 10 - меньшее.
Второй случай, когда основание, равное 10 - большее.
Рассмотрим рисунки.
Для первого случая:
Чтобы найти величину неизвестного основания АD, нужно найти х=АМ.
АМ-катет прямоугольного ΔАВМ, с извесной гипотенузой АВ=5 и катетом ВМ=4 (высота трапеции). АМ=√(АВ²-ВМ²)=√(25-16)=3
Т.к. АВ=СD и ВМ=СМ, а также ∠А=∠D и ∠АМВ=∠DNC, то ΔАВМ=ΔDNC и, соответственно, x=АМ=ND=3.
Т.к. основания трапеции параллельны, то высоты, опущенные из вершин верхнего основания ВС на нижнее, образуют прямоугольник со сторонами ВС=МN=10 и ВМ=СМ=4.
Основаниие АD=AM+MN+ND=MN+2·x
Тогда АD=10+2·3=16.
Тогда площадь такой трапеции S₁=BM·(BC+AD)÷2=4·(10+16)÷2=52 ед.²
Для второго случая:
Чтобы найти величину неизвестного основания ВС=10-2х=10-2·3=4
Тогда площадь такой трапеции S₂=BM·(BC+AD)÷2=4·(4+10)÷2=28 ед.²
ответ: если меньшее основание трапеции равно 10 , то S₁=52 ед.²;
если большее основание трапеции равно 10, то S₂=28 ед.²
Задача 1
одна сторона пар-ма = 3*корень из 3=5,196
косинус 30 градусов = 0,15425
опускаем высоту из вершины пар-ма, получается треугольник с прямым углом и углом в 30 градусов, гипотинуза которога = 2 (по условию задачи)
найдем высоту = 2* синус 30=2*0,988=1,976
далее ищем катер, прилежащий к углу 30 гр
для этого ,15425*2 (гипотинузу) = 0,3
далее складываем длинну стороны пар-ма с длинной найденного катета. =5,196+,03=5,496
вывсота и сторона в 5,496 образуют прямоугольник, диаганаль которого легко найти по теореме пифагора = корень из (5,196*5,196+1,979*1,976) = 5,8
Задача 2
опускаем высоту из вершины трапеции на основание, получается прямоугольный треугольник
если один катет= высоте и = 6, а гипотинуза =10, то второй катет =
= корень из (10*10-6*6)= корень из 64=8
меньше основание = 20-8-8= 4
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
У задачи есть два случая.
Первый случай, когда основание, равное 10 - меньшее.
Второй случай, когда основание, равное 10 - большее.
Рассмотрим рисунки.
Для первого случая:
Чтобы найти величину неизвестного основания АD, нужно найти х=АМ.
АМ-катет прямоугольного ΔАВМ, с извесной гипотенузой АВ=5 и катетом ВМ=4 (высота трапеции). АМ=√(АВ²-ВМ²)=√(25-16)=3
Т.к. АВ=СD и ВМ=СМ, а также ∠А=∠D и ∠АМВ=∠DNC, то ΔАВМ=ΔDNC и, соответственно, x=АМ=ND=3.
Т.к. основания трапеции параллельны, то высоты, опущенные из вершин верхнего основания ВС на нижнее, образуют прямоугольник со сторонами ВС=МN=10 и ВМ=СМ=4.
Основаниие АD=AM+MN+ND=MN+2·x
Тогда АD=10+2·3=16.
Тогда площадь такой трапеции S₁=BM·(BC+AD)÷2=4·(10+16)÷2=52 ед.²
Для второго случая:
Чтобы найти величину неизвестного основания ВС=10-2х=10-2·3=4
Тогда площадь такой трапеции S₂=BM·(BC+AD)÷2=4·(4+10)÷2=28 ед.²
ответ: если меньшее основание трапеции равно 10 , то S₁=52 ед.²;
если большее основание трапеции равно 10, то S₂=28 ед.²