20 б. у рівнобедреному трикутнику авс з основою ав проведено медіани аd і ве . периметр трикутнику авс дорівнює 70 см, а периметр трикутнику асd на 20 см більший за периметр трикутнику аве. знайдіть основу трикутнику.
Расстояние от точки до плоскости есть перпендикуляр, проведенный из этой точки к данной плоскости. AD перпендикулярна alpha, следовательно, AD перпендикулярна любойпрямой, лежащей в плоскости alpha. Получаем два прямоугольных треугольника - ADB и ADC. BD - проекция наклонной AB на плоскость alpha. Аналогично, DC - проекция прямойAC на плоскость alpha.
/_ABD=45, /_ACD=60
Угол между проекциями наклонных - угол между прямыми BD и DC. /_BDC=150 (поусловию). Треугольник ADB: /_ABD=45. По теореме о сумме углов треугольника получаем/_BAD=45
Треугольник ADB - равнобедренный прямоугольный. BD = AD = 9 см.
Изобразим схематически условие задачи:АВ - первая сосна,CD - вторая сосна,AD - расстояние между ними. Если считать, что сосны растут перпендикулярно земле, получаем прямоугольную трапецию с основаниями АВ и CD, в которой большая боковая сторона ВС - искомая величина. Проведем СН - высоту трапеции. СН = АD = 20 м, как расстояния между параллельными прямыми,СН║AD как перпендикуляры к одной прямой, значит AHCD - прямоугольник, ⇒АН = CD = 12 м ВН = АВ - АН = 27 - 12 = 15 м Из прямоугольного треугольника ВСН по теореме Пифагора:ВС² = ВН² + НС² = 15² + 20² = 225 + 400 = 625ВС = 25 м
Расстояние от точки до плоскости есть перпендикуляр, проведенный из этой точки к данной плоскости. AD перпендикулярна alpha, следовательно, AD перпендикулярна любойпрямой, лежащей в плоскости alpha. Получаем два прямоугольных треугольника - ADB и ADC. BD - проекция наклонной AB на плоскость alpha. Аналогично, DC - проекция прямойAC на плоскость alpha.
/_ABD=45, /_ACD=60
Угол между проекциями наклонных - угол между прямыми BD и DC. /_BDC=150 (поусловию). Треугольник ADB: /_ABD=45. По теореме о сумме углов треугольника получаем/_BAD=45
Треугольник ADB - равнобедренный прямоугольный. BD = AD = 9 см.
Рассмотрим треугольник АDC . Угол АСD=60, значит, угол DAC=30. По теореме синусов находим DC.
9/sin 60 = DC/sin30; DC=9*0,5/√3/2; DC=3√3.
BC находим по теореме косинусов BC^2=BD^2+DC^2-2*BD*DC*cosBDC.
ВС^2=81+27-54√3*(-1/2√3)=189; ВС=√189=13,75.
ответ: 13,75 см.
Если считать, что сосны растут перпендикулярно земле, получаем прямоугольную трапецию с основаниями АВ и CD, в которой большая боковая сторона ВС - искомая величина.
Проведем СН - высоту трапеции. СН = АD = 20 м, как расстояния между параллельными прямыми,СН║AD как перпендикуляры к одной прямой, значит AHCD - прямоугольник, ⇒АН = CD = 12 м
ВН = АВ - АН = 27 - 12 = 15 м
Из прямоугольного треугольника ВСН по теореме Пифагора:ВС² = ВН² + НС² = 15² + 20² = 225 + 400 = 625ВС = 25 м