В этой задаче нужно использовать теорему об отношении площадей подобных треугольников: Если нужно, докажите, что эти два треугольника - подобные (их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого) .
S/s1 = k^2, где k - коэффициент подобия.
По условию, площадь одного треугольника в два раза больше площади второго:
S = 2s1
S/s1 = 2, S/s1 = k^2
k = √2
Отношение оснований треугольнико равно коэффициенту подобия:
ОСН/осн = k
Найдём ОСН = осн*k = 18*√2
ответ: Основание треугольника равно 18*√2 или ≈ 25,46 см.
Если нужно, докажите, что эти два треугольника - подобные (их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого) .
S/s1 = k^2, где k - коэффициент подобия.
По условию, площадь одного треугольника в два раза больше площади второго:
S = 2s1
S/s1 = 2, S/s1 = k^2
k = √2
Отношение оснований треугольнико равно коэффициенту подобия:
ОСН/осн = k
Найдём ОСН = осн*k = 18*√2
ответ: Основание треугольника равно 18*√2 или ≈ 25,46 см.
4) АС=24см, Sавсд=120см²
5) 12 см
Объяснение:
4)
В ромбе АВ=13см, ВД=10см
так как это ромб, то ВО=ОД=ВД/2=10/2=5 см
В ромбе диагонали пересекаются под прямыми углами
В прямоугольном треугольнике АВО по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов) находим сторону АО
АО²=АВ²-ВД²=13²-5²=144
АО=12см
АС=АО+ОС, АС=12+12=24см
Площадь ромба равна половине произведения его диагоналей
S=1/2*(ВД*АС)=1/2*(10*24)=120см²
5)Высота в треугольнике равна h=2/a√(p*(p-a)*(p-b)*(p-c)) где р - полупериметр p=(25+20+15)/2=30
Наименьшая высота будет при использовании в формуле наибольшей длины, поэтому
h=2/25√(30*(30-25)*(30-20)*(30-5))=2/25*150=12 см