Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
СМ : МК : КА = 2 : 3 : 2, т.е. СМ - две одинаковые части, МК - три такие же части, а КА - 2 части. Тогда
СМ : СК : СА = 2 : 5 : 7
Если прямая параллельна стороне треугольника, то она отсекает треугольник, подобный данному, значит
ΔМСТ подобен ΔАСВ и коэффициент подобия равен:
k₁ = CM : CA = 2 : 7
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Smct : Sabc = 4 : 49
Smct = 4 · 98 / 49 = 8 см²
ΔКСР подобен ΔАСВ,
k₂ = CK : CA = 5 : 7
Skcp : Sacb = 25 : 49
Skcp = 25 · 98 / 49 = 50 см²
Skmtp = Skcp - Smct = 50 - 8 = 42 см²
Sakpb = Sacb - Skcp = 98 - 50 = 48 см²
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54