Углы при основании 72°. То есть биссектриса "отрезает" от треугольника равнобедренный треугольник, углы при основании которого равны 36°. Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника. Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается x = L = a; (одна из сторон уже найдена, основание a = L = √20) По свойству биссектрисы b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1; (b/a)^2 - (b/a) - 1 = 0; b/a = (√5 + 1)/2; если подставить a = 2√5; получится b = 5 + √5;
Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника.
Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается
x = L = a; (одна из сторон уже найдена, основание a = L = √20)
По свойству биссектрисы
b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1;
(b/a)^2 - (b/a) - 1 = 0;
b/a = (√5 + 1)/2;
если подставить a = 2√5; получится
b = 5 + √5;
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3