Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
6√3
Объяснение:
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
корень из 169 = 13 см
расстояние равно от вершины до основания 13см
2) угол dod1 = 45 градусов, . в треугльника dod1 угол d = 90 градусов, => треугольник dod1 = прямоугольный => угол dod1 = углу od1d => od = dd1 = h. od = 1/2 * db = 1/2* корень из( 144 + 256) = 1/2 * 20 = 10. найдем площадь сечения через формулу 1/2 * od1 * ac. ac = 20, od1 = корень из(100+100) = 10√2 => s acd1 = 1/2 * 20 * 10√2 = 100√
3) проекцию катета отметим как х
проекцию гипотинузы как y
решаем:
х=10*cos60град.=5 дм.
ад=√(100-25)=√75
ав=√(100+100)=√200
y=√(200-75)=√125=15 дм.
ответ:
проекция катета равна 5дм;
проекция гипотенузы равна 15дм.