АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
"Начертить четырёхугольник, у которого есть минимум 3 прямых угла, и две последовательные стороны имеют одинаковую длину"
Если это так, то рассуждаем следующим образом.
1. Сумма углов четырёхугольника равна 360°. Три из них по условию в сумме дали 270°, тогда и третий равен 90°, речь в задаче по определению идёт о прямоугольнике.
2. Смежные ( соседние, имеющие общую вершину) стороны этого прямоугольника, которые при изображении откладывают последовательно друг за другом, равные. Противолежащие стороны прямоугольника равны по свойству, тогда все стороны получатся равными, данный прямоугольник является квадратом.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
квадрат.
Объяснение:
Думаю, что задание звучало по-другому:
"Начертить четырёхугольник, у которого есть минимум 3 прямых угла, и две последовательные стороны имеют одинаковую длину"
Если это так, то рассуждаем следующим образом.
1. Сумма углов четырёхугольника равна 360°. Три из них по условию в сумме дали 270°, тогда и третий равен 90°, речь в задаче по определению идёт о прямоугольнике.
2. Смежные ( соседние, имеющие общую вершину) стороны этого прямоугольника, которые при изображении откладывают последовательно друг за другом, равные. Противолежащие стороны прямоугольника равны по свойству, тогда все стороны получатся равными, данный прямоугольник является квадратом.
ответ: необходимо начертить квадрат.