21 ! на рисунке (подписано: "рис. 1") две окружности имеют общий центр о. через точку м большей окружности провели касательные мв и мс к меньшей окружности, к – точка касания. найдите отрезок мк, если радиус большей окружности равен 12 см, а угол вмс равен 120°.
2. Вспомни теорему Пифагора и опускай перпендикуляры вниз от каждого вектора-отрезка, чтобы потом по этой теореме можно было посчитать их численное значение. Т.е. просто дострой до прямоугольного треугольника каждый вектор другими отрезками (я их карандашом выделил). И посчитай значение каждого вс карандашом) отрезка по клеточкам...
3. Теперь надо по теореме Пифагора считать численное значение каждого основного из трёх векторов-отрезков (которые ручкой), которые будут являться гипотенузами в соответствующих треугольниках.
4. В основном большом треугольнике (ручкой) известны все стороны (основные векторы-отрезки) - по теореме косинусов, используя все стороны этого треугольника, можно найти один из его углов. Пусть это будет угол искомый - между BA и BC.
Посчитав, получил примерно 37,94°. Очень большие числа были, раза 4 проверил всё. И даже транспортиром вручную измерил в конце угол: около 38°. Так что точно правильно.
Если что-то неясно-непонятно, пиши, я всегда на связи.
именно в такой трапеции, как у нас,
S=r*p где р- полупериметр. (это легко доказывается, но это такое свойство)
можно сразу найти r=S/p=320/40=8
тогда высота равна 2*8=16
периметр будет (если все сложить) 4х+4у=80 =>
1) х+у=20
а из треуг. СДЕ имеем (х+у)²=(у-х)²+16² подставляем 1) в левую часть
имеем 20²=(у-х)²+16²
(у-х)²=144 т.к. у>х, то просто извлекаем квадрат и получаем
2) у-х=12
из 1) и 2) находим х=4 у=16
теперь из подобия закрашенных треугольников(я их вынес в отдельный рис., находим искомое КМ.
КМ/СЕ=КС/АЕ
КМ/16=4/20
КМ=4*16/20=3.2