Основание пирамиды-прямоугольник с углом между диагоналями 120° градусов. Все боковые ребра пирамиды равны 3√2 см и наклонены к плоскости основания под углом 45°. Найдите объем пирамиды.
Боковые ребра пирамиды равны и наклонены к плоскости основания под углом 45°, следовательно, проекции ребер на плоскость основания также равны между собой и равны половинам диагоналей основания, а треугольник, образованный высотой SO пирамиды, половиной OC диагонали и боковым ребром SC - прямоугольный равнобедренный. Отсюда высота SO пирамиды также равна половине диагонали. По т. Пифагора или формулы равнобедренного прямоугольного треугольника с=a√2 высота SO пирамиды и половина диагонали основания равны 3 см. Основание пирамиды - прямоугольник с углом между диагоналями 120° градусов, значит, второй угол между ними 60°. Меньшая сторона прямоугольника образует с половинами диагоналей равносторонний треугольник, ⇒ меньшая сторона основания также равна 3 см Диагональ основания равна 3*2=6 см Большая сторона основания - катет, противолежащий углу 60° и равна 6*sin(60°)= 3√3 см Объем пирамиды равен произведению площади основания на высоту, деленную на 3: V=Sh:3 V=3*(3√3)*3:3=9√3 см³
И ДРУЗЬЯ
ные слова.
1. Послушай и ответы на вопросы.
О чём эта история? Найди в тексте специальные слова,
которые тебе рассказывать свой истории.
Придумай с другом 1-2 вопроса к этой истории.
1. Когда-то давно Вова ухаживал за раненой
ўткой. 2. Однажды утром ей стало лучше,
и она снова могла летать. 3. К сожалению
мальчика, пришло время, и она улетела на
юг. 4. К счастью, весной Вова увидел её,
летящую в небе. 5. В конце концов мальчик
и ўтка остались добрыми друзьями.
О чём идёт речь в тексте?
Выбери вёрное утверждение:
а) О том, что Вова ухаживал за раненой ўткой?
б) О том, что она улетела на юг?
c) О том, что мальчик и утка остались добрыми друзьями?
Это
Боковые ребра пирамиды равны и наклонены к плоскости основания под углом 45°, следовательно,
проекции ребер на плоскость основания также равны между собой и равны половинам диагоналей основания,
а треугольник, образованный высотой SO пирамиды, половиной OC диагонали и боковым ребром SC - прямоугольный равнобедренный.
Отсюда высота SO пирамиды также равна половине диагонали.
По т. Пифагора или формулы равнобедренного прямоугольного треугольника с=a√2 высота SO пирамиды и половина диагонали основания равны 3 см.
Основание пирамиды - прямоугольник с углом между диагоналями 120° градусов, значит, второй угол между ними 60°.
Меньшая сторона прямоугольника образует с половинами диагоналей равносторонний треугольник, ⇒ меньшая сторона основания также равна 3 см
Диагональ основания равна 3*2=6 см
Большая сторона основания - катет, противолежащий углу 60° и равна 6*sin(60°)= 3√3 см
Объем пирамиды равен произведению площади основания на высоту, деленную на 3:
V=Sh:3
V=3*(3√3)*3:3=9√3 см³