Sбок ==> ? Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ; Угол DMA будет линейным углом между плоскостями DBC и ABC [(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC ( а BC линия пересечения граней DBC и ABC) . C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ; Sбок =a*DA +S(BDC) . Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα . S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ; S(BDC) = a²√3/4)/cosα. Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα). Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3). ответ : 18(3+√3) .
Sбок ==> ?
Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ;
Угол DMA будет линейным углом между плоскостями DBC и ABC
[(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC
( а BC линия пересечения граней DBC и ABC) .
C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому
Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ;
Sбок =a*DA +S(BDC) .
Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα .
S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ;
S(BDC) = a²√3/4)/cosα.
Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα).
Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3).
ответ : 18(3+√3) .
1. Запишем формулу площади трапеции:
2. Запишем формулу площади ромба:
S=ah; a=S/h=44/4=11
3. Запишем формулу периметра:
P=2(a+b)
16=2(a+b)
a+b=8
a=8-b
Запишем формулу площади и подставим вместо а, выражение 8-b.
S=ab=(8-b)*b=8b-b^2
12=8b-b^2
b^2-8b+12=0
D=64-4*12=16
b1=(8+4)/2=6
b2=(8-4)/2=2
Если ширина 6, то длина 8-6=2, если ширина 2, то длина 8-2=6
4. Наибольшей высотой будет та, которая опущена к меньшей стороне, т.е. к 17.
Найдем площадь по формуле Герона:
p=(17+65+80)/2=162/2=81
5. Найдём площадь по формуле Герон, но сначала найдем полупериметр:
P=(a+b+c)/2=(17+65+80)/2=81
[tex]S=\sqrt{81*(81-17)(81-65)(81-80)}=\sqrt{81*64*16*1}=288
Запишем формулу площади через высоту.
S=ah; h=S/a
найдём наибольшую высоту:
h1=288/17=16,9=17
h2=288/65=4,4
h3=288/80=3,6
Наибольшая высота равна 17.
6.Обозначим одну часть за х, тогда диагонали равны 2х и 3х. Запишем формулу площади через диагонали:
S=1/2 *d1*d2*sina ; sina=1 , т.к. диагонали ромба пересекаются под прямым углом.
2S=d1*d2
2*48=2x*3x
96=6x^2
x^2=16
x=4 (так как длина не может быть отрицательноц, то корень только один)