Как я понял, нужно из трех вариантов выбрать правильный. Критерием того, могут ли три положительных числа быть сторонами треугольника, служит неравенство треугольника: сумма длин двух сторон треугольника должна быть больше третьей стороны. При этом достаточно, проверить, что сумма длин самых маленьких сторон больше третьей стороны.
В первом случае 4+5>7, значит, такой треугольник возможен.
Во втором случае 3+4=7, значит, такой треугольник невозможен (в этом случае треугольник как бы сплющивается в отрезок).
В третьем случае 4+7=11 - ситуация такая же, как и во втором случае.
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
В первом случае 4+5>7, значит, такой треугольник возможен.
Во втором случае 3+4=7, значит, такой треугольник невозможен (в этом случае треугольник как бы сплющивается в отрезок).
В третьем случае 4+7=11 - ситуация такая же, как и во втором случае.
ответ: Третья сторона равна 5 см
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sавс / Sмкр = 48 / Sмкр = 22.
Sмкр = 48 / 4 = 12 см2.
ответ: Площадь треугольника МКР равна 12 см2.