25. Точка 0 лежит на большем основании AD трапеции ABCD и одина- ково удалена от прямых, проходящих через остальные стороны трапеции. Докажите, что 0 - точка пересечения биссектрис углов В и С трапеции ABCD.
ответ: Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
Треугольник СДЕ прямоугольный и равнобедренный, так как СЕ высота трапеции, а угол СДЕ равен 450, тогда СЕ = ЕД = 4 см.
Так как BF высота трапеции, то BF = СЕ = 4 см, а треугольник АВF прямоугольный, тогда: tg60 = BF / AF. AF = BF / tg60 = 4 / √3 см.
Длина отрезка EF = ВС = 5 см, тогда АД = AF + EF + ДЕ = 4 / √3 + 5 + 4 = 9 + 4 / √3 см.
Определим площадь трапеции:
Sавсд = (ВС + АД) * СЕ / 2 = (5 + 9 + 4 / √3) * 4 / 2 = 28 + 8 / √3 = (84 + 8 * √3) / 3 см2.
ответ: Площадь трапеции равна (84 + 8 * √3) / 3 см2
как то так =)
ответ: Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
Объяснение: