251. Розмістіть у системі координат рівно- бедрений трикутник з основою 6 і бічною стороною 5 так, щоб основа і вершина, про- тилежна основі трикутника, лежали на осях координат. Визначте координати вершин трикутника.
Тетраэдр - это ОН...))) Поэтому суммарная длина ЕГО ребер..))) Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)
Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3.
-------
Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ.
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ.
АС и ВС - секущие при параллельных прямых, отсюда
треугольники А1СВ1 и АСВ - подобны.
Из их подобия следует отношение
А1В1:АВ=2:3
А1В1:15=2:3
3 А1В1=30
А1В1=10 см