26. apoc – квадрат. внутри него построен равносторонний треугольник abc. на стороне вс вне треугольника построен квадрат bcrt. лежат ли точки a, о и т на одной прямой?
1)Так как треугольник BDC равнобедренный,значит BD=DC и угол DBC=углу DCB,как углы при основании,а так как угол DBC=30 градусов,значит угол DCB=30 градусов. 2)Так как DA медиана(а по свойству равнобедренного треугольника,медиана будет являться высотой и биссектрисой). 3)Так как угол BDC=120 градусов,а DA является биссектрисой,значит угол BDC делим пополам,120:2=60 градусов,угол BDA=60 градусов и угол CDA=60 градусов. 4)Так как DA медиана,высота и биссектриса,она проводится перпендикулярно,значит угол DAB=90 градусов,и угол DAC=90 градусов. 5)В треугольнике ADC,угол ADC=60 градусов,угол DCA=30 градусов,угол DAC=90 градусов.ADC+DCA+DAC=60+30+90=180 градусов.По свойству любого треугольника,сума всех углов равна 180 градусов.Значит мы решили верно. ответ:угол ADC=60 градусов,угол DCA=30 градусов,угол DAC=90 градусов.
2)Так как DA медиана(а по свойству равнобедренного треугольника,медиана будет являться высотой и биссектрисой).
3)Так как угол BDC=120 градусов,а DA является биссектрисой,значит угол BDC делим пополам,120:2=60 градусов,угол BDA=60 градусов и угол CDA=60 градусов.
4)Так как DA медиана,высота и биссектриса,она проводится перпендикулярно,значит угол DAB=90 градусов,и угол DAC=90 градусов.
5)В треугольнике ADC,угол ADC=60 градусов,угол DCA=30 градусов,угол DAC=90 градусов.ADC+DCA+DAC=60+30+90=180 градусов.По свойству любого треугольника,сума всех углов равна 180 градусов.Значит мы решили верно.
ответ:угол ADC=60 градусов,угол DCA=30 градусов,угол DAC=90 градусов.
Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).