Пусть O - центр данной окружности и AB - ее хорда. Обозначим через x1/5 угловой величины меньшей из дуг с концами в точках A и B. Тогда величина большей из дуг равна 7x, а так как объединение этих двух дуг есть полная окружность, 5x + 7x = 360°, откуда x = 30°. Следовательно, величина меньшего из углов AOBравна 150°, а тогда из рассмотрения равнобедренного треугольника ABO получаем, что угол BAO равен 15°. Касательная к окружности, проходящая через точку A, перпендикулярна радиусу OA и, следовательно, образует с хордой AB угол 75°.
Точка О очевидно(?) точка пересечения диагоналей данного параллелограмма, вектор MO+вектор FE+вектор OF+вектор EN=вектор MO+вектор OF+вектор FE+вектор EN=по правилу многоугольника=вектор MN
Далее вектор ME +вектор FM=вектор FM+вектор ME=по правилу треугольника=вектор FE
Так как MN и FE противоположные стороны даннного паралеллограмма, то длины векторов MN и FE равны, далее из определения параллелограмма как параллелограмма, они лежат на паралельных пряммых, и одинаково направлены, значит по определению равенства векторов вектор MN=вектор FE, что означает справедливость равенства данного в условии, что и требовалось доказать. Доказано
вектор MO+вектор FE+вектор OF+вектор EN=вектор MO+вектор OF+вектор FE+вектор EN=по правилу многоугольника=вектор MN
Далее вектор ME +вектор FM=вектор FM+вектор ME=по правилу треугольника=вектор FE
Так как MN и FE противоположные стороны даннного паралеллограмма, то длины векторов MN и FE равны,
далее из определения параллелограмма как параллелограмма, они лежат на паралельных пряммых, и одинаково направлены, значит по определению равенства векторов
вектор MN=вектор FE, что означает справедливость равенства данного в условии, что и требовалось доказать. Доказано