CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Срединные перпендикуляры треугольника пересекаются в одной точке - центре описанной около него окружности. Известно, что только в прямоугольном тр-ке центр описанной окружности лежит на одной из его сторон - гипотенузе, причём на её середине, так как он равноудалён от вершин треугольника.
Рассмотрим подробно. Тр-ки АВР и АРС равнобедренные, т.к. РМ⊥АВ и РК⊥АС, ВМ=АМ и АК=КС, значит РМ и РК - высоты и медианы (признак равнобедренности тр-ка). РМ и РК - биссектрисы тр-ков АВР и АРС, углы ВРА и АРС - смежные, значит РМ⊥РК. Углы между соответственно перпендикулярными прямыми равны. РМ⊥АВ, РК⊥АС, РМ⊥РК, значит АВ⊥АС ⇒ ∠А=90°. Доказано.
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Известно, что только в прямоугольном тр-ке центр описанной окружности лежит на одной из его сторон - гипотенузе, причём на её середине, так как он равноудалён от вершин треугольника.
Рассмотрим подробно.
Тр-ки АВР и АРС равнобедренные, т.к. РМ⊥АВ и РК⊥АС, ВМ=АМ и АК=КС, значит РМ и РК - высоты и медианы (признак равнобедренности тр-ка).
РМ и РК - биссектрисы тр-ков АВР и АРС, углы ВРА и АРС - смежные, значит РМ⊥РК.
Углы между соответственно перпендикулярными прямыми равны.
РМ⊥АВ, РК⊥АС, РМ⊥РК, значит АВ⊥АС ⇒ ∠А=90°.
Доказано.