2маленькие окружности одинаковых радиусов касаются внешне, и каждая из них касается внутренне большой окружности. о - центр большой окружности, а и б - центры маленьких окружностей. периметр треугольника аоб = 18. найти радиус большой окружности.
Углы при основании 72°. То есть биссектриса "отрезает" от треугольника равнобедренный треугольник, углы при основании которого равны 36°. Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника. Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается x = L = a; (одна из сторон уже найдена, основание a = L = √20) По свойству биссектрисы b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1; (b/a)^2 - (b/a) - 1 = 0; b/a = (√5 + 1)/2; если подставить a = 2√5; получится b = 5 + √5;
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника.
Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается
x = L = a; (одна из сторон уже найдена, основание a = L = √20)
По свойству биссектрисы
b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1;
(b/a)^2 - (b/a) - 1 = 0;
b/a = (√5 + 1)/2;
если подставить a = 2√5; получится
b = 5 + √5;
Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Интересная задачка напряг извилины.