2на область определения: 1.найдите область определения: y=arcsin2x/1n(x+1) 2.сколько целых чисел принадлежит области области определения функции: y=arcsin(2x-5/3)
Сторона MP^2 равна по теореме пифагора: (Mx-Px)^2+(Му-Ру)^2= (-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем 169=117+52 => 169=169 так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.
Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
(-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов.
Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем
169=117+52 => 169=169
так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.