2вариант 1.построить треугольник кде, с прямым углом д. найти sin е, cos е, tg е, sin к, cos к, tg к, если дк=4, де= 3см. 2.в прямоугольном треугольнике кдм катет дм = 30 см. высота дв отсекает от гипотенузы км отрезок вм равный 18 см. найдите дв, cos к и дк. 3.в прямоугольнике кмсд диагональ
кс равна 9 см и составляет угол в 500 со стороной км. найдите площадь данного прямоугольника.
1)
Проведем диагональ NP. Треугольники PMN и PKN равны по трем сторонам - две по условию, третья - общая. .
Следовательно, углы при вершинах К и М равны. Угол К=100°
2)
Диагональ BD делит четырехугольник на треугольники ∆ ABD и ∆ CBD. В этих треугольниках стороны ВС=АD по условию, DB общая, углы между этими сторонами равны. ∆ ABD и ∆ CBD равны по первому признаку равенства треугольников.
Следовательно, стороны АВ=CD.
Если противоположные стороны четырехугольника равны, этот четырехугольник - параллелограмм. ⇒, АВ||CD. Доказано.
Треугольник AOB является равнобедренным, так как AO=OB (диагонали прямоугольника равны и в точке пересечения делятся пополам). Угол BAO в этом треугольнике равен 50 градусам, тогда угол BOA также равен 50 градусам, а угол AOB равен 180-50-50=80 градусам. OE - медиана треугольника, так как точка E - середина AB. Медиана равнобедренного треугольника, проведённая к основанию, является также его биссектрисой, тогда угол EOB равен половине угла BOA и равен 80\2=40 градусам.
Таким образом, угол EOD равен 180-EOB=180-40=100 градусам.