Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42
1. При пересечении прямых a и b секущей с сумма внутренних односторонних углов 123+67=190, что больше 180, следовательно прямые a и b не параллельны.
2. Внешний угол равен сумме внутренних, не смежных с ним.
CBV =D+C => 21x +7 =7x +9 +40 => 14x =42 => x=3
CBV =63+7 =70°
3. Внешние углы равны, следовательно смежные с ними внутренние также равны - треугольник равнобедренный.
Возможны два случая:
1) боковые стороны 12, тогда основание 38-12*2=14
2) основание 12, тогда боковые стороны (38-12)/2=13
ответ: {12, 12, 14} или {13, 13, 12} в сантиметрах
4. Внешний угол равен сумме внутренних, не смежных с ним.
120 =90 +B => B=30
Катет против угла 30 равен половине гипотенузы.
AC=x, AB=2x
AC+AB =21 => 3x=21 => x=7
AC=7 см, AB=14 см