Задача на подобие треугольников. Сделаем рисунок по условию задачи и рассмотрим его. В треугольниках ВDЕ и АВС ∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС. ∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА. ∠В общий. ⇒ эти треугольники подобны. АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ Пусть ВD=х, а ВЕ=у. Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно) Точно так же (у+7,8):у=16:10, откуда у=13. Следовательно, ВD=12, DЕ=13 ( ед. длины)
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
Сделаем рисунок по условию задачи и рассмотрим его.
В треугольниках ВDЕ и АВС
∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС.
∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА.
∠В общий. ⇒ эти треугольники подобны.
АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ
Пусть ВD=х, а ВЕ=у.
Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно)
Точно так же
(у+7,8):у=16:10, откуда у=13.
Следовательно, ВD=12, DЕ=13 ( ед. длины)
Объяснение:
так думаю.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
нравится8