Построить окружность с центром в одном конце отрезка.
Построить окружность такого же радиуса в другом конце отрезка. Провести прямую через точки пересечения окружностей.
Проведенная прямая и будет серединным перпендикуляром.
2)
Шаг 1. Проводим окружность с произвольным радиусом r с центром в точке O. Окружность пересекает прямую в точках A и B.
Шаг 2. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей.
Обращаю ваше внимание на то что точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.
Шаг 3. Искомая прямая проходит через точки С и О.
Доказательство.
Проведем отрезки AC и CB. Δ ACO = Δ BCO по третьему признаку равенства треугольников (AO = OB, AC = CB, по построению, CO – общая). ∠ COA = ∠ COB = 90 °. Прямая CO ⊥ AB.
Как было уже сказано выше все четыре угла образованных при пересечении двух прямых перпендикулярны если хотя бы один из них перпендикулярен, т.е. является прямым и равен 90 градусов.
Объяснение:
Пусть диаметр основания цилиндра х ( r=х/2) ,тогда высота цилиндра 13х.
В осевом сечении ( данной комбинации тел) получается прямоугольник, вписанный в круг. Половина диагонали прямоугольника будет радиусом шара.
Из прямоугольного треугольника ( составленного из диагонали и 2-х сторон прямоугольника ) гипотенуза равна √( (13х)²+х²)=х√170.
Тогда R(шара)=( х√170)/2.
S(б.цил)=2Пrh ⇒S(б.цил)=2П*(х/2)*13х=13Пх²
S(шара)=4ПR² ⇒S(шара)=4П* ( (х√170)/2)²=170П х²
S(б.цил): S(шара)= (13Пх²)/(170 П х²)=13/170
1)
Сначала построй отрезок AB.
Построить окружность с центром в одном конце отрезка.
Построить окружность такого же радиуса в другом конце отрезка. Провести прямую через точки пересечения окружностей.
Проведенная прямая и будет серединным перпендикуляром.
2)
Шаг 1. Проводим окружность с произвольным радиусом r с центром в точке O. Окружность пересекает прямую в точках A и B.
Шаг 2. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей.
Обращаю ваше внимание на то что точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.
Шаг 3. Искомая прямая проходит через точки С и О.
Доказательство.
Проведем отрезки AC и CB. Δ ACO = Δ BCO по третьему признаку равенства треугольников (AO = OB, AC = CB, по построению, CO – общая). ∠ COA = ∠ COB = 90 °. Прямая CO ⊥ AB.
Как было уже сказано выше все четыре угла образованных при пересечении двух прямых перпендикулярны если хотя бы один из них перпендикулярен, т.е. является прямым и равен 90 градусов.