Точка О - точка пересечения высот АР и СQ. Рассмотрим прямоугольные ΔАQO и ΔCPO: у них <АQO=<CPO=90° (по условию), <АОQ=<CОР (вертикальные), значит <QАO=<РСO. Прямоугольные ΔAРВ и ΔСQB подобны по 1 признаку (по 2 углам <В- общий, <ВАР=<ВСQ), значит ВР/ВQ=АВ/ВС или АВ/ВР=ВС/ВQ. Исходя из этого ΔАВС подобен ΔРВQ по 2 признаку (по двум сторонам АВ/ВР=ВС/ВQ и углу между ними <В- общий). Т.к. ΔАВС остроугольный, то <В меньше 90°. Тогда из прямоугольного ΔАРВ находим коэффициент подобия k=BP/AB=cos B. Отношение периметров подобных треугольников равно коэффициенту подобия: Равс/Ррвq=15/9=5/3.Тогда cos B=3/5. У подобных треугольников отношение радиусов или диаметров описанных окружностей равно коэффициенту подобия, значит радиусы Rрвq/Rавc=3/5 Rавc=5Rрвq/3=5*9/5*3=3. Исходя из формулы радиуса описанной окружности Rавc=АС/2sin B, найдем АС=Rавc*2sin B=Rавc*2 √(1-соs² B)=3*2*√(1-9/25)=3*2*4/5=4,8 ответ: 4,8
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=Н - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. <SAО=<SBO=<SCO=<SДО=α. Из прямоугольного ΔSАО: АО=SО/tg α=H/tg α Диагональ основания АС=ВД=2АО=2H/tg α Сторона основания АВ=АС/√2=2H/√2tg α=√2H/tg α Объем V=АВ²*SO/3=(√2H/tg α)²*Н/3=2H³/3tg² α
Рассмотрим прямоугольные ΔАQO и ΔCPO: у них <АQO=<CPO=90° (по условию), <АОQ=<CОР (вертикальные), значит <QАO=<РСO.
Прямоугольные ΔAРВ и ΔСQB подобны по 1 признаку (по 2 углам <В- общий, <ВАР=<ВСQ), значит ВР/ВQ=АВ/ВС или АВ/ВР=ВС/ВQ.
Исходя из этого ΔАВС подобен ΔРВQ по 2 признаку (по двум сторонам АВ/ВР=ВС/ВQ и углу между ними <В- общий). Т.к. ΔАВС остроугольный, то <В меньше 90°. Тогда из прямоугольного ΔАРВ находим коэффициент подобия k=BP/AB=cos B.
Отношение периметров подобных треугольников равно коэффициенту подобия: Равс/Ррвq=15/9=5/3.Тогда cos B=3/5.
У подобных треугольников отношение радиусов или диаметров описанных окружностей равно коэффициенту подобия, значит радиусы Rрвq/Rавc=3/5
Rавc=5Rрвq/3=5*9/5*3=3.
Исходя из формулы радиуса описанной окружности Rавc=АС/2sin B, найдем АС=Rавc*2sin B=Rавc*2 √(1-соs² B)=3*2*√(1-9/25)=3*2*4/5=4,8
ответ: 4,8
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=Н - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
<SAО=<SBO=<SCO=<SДО=α.
Из прямоугольного ΔSАО:
АО=SО/tg α=H/tg α
Диагональ основания АС=ВД=2АО=2H/tg α
Сторона основания АВ=АС/√2=2H/√2tg α=√2H/tg α
Объем
V=АВ²*SO/3=(√2H/tg α)²*Н/3=2H³/3tg² α