1. РТ = 3,5 см
Объяснение:
1.
Из условия КМ - средняя линия трапеции ABCD
т.к. средняя линия в трапеции равна полусумме оснований то
КМ = (AD + BC)/2 = (8 + 2)/2 = 5 см
Теперь рассмотрим трапецию КМВС
РТ - средняя линия трапеции КМВС ( из условия)
значит
РТ = (КМ + ВС)/2 = (5 + 2)/2 = 7/2 = 3,5 см
2.
KL = EL - EK
т.к. EF - средняя линия трапеции ABCD
то EK - средняя линия ΔABC, а EL - средняя линия ΔABD
тогда
EK = a/2 и EL = b/2
KL = EL - EK подставляем
KL = b/2 - a/2 = (b-a)/2
KL = (b-a)/2
Рассмотрим прямоугольный △ABC:
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠А = 90° - 45° = 45°.
Т.к. ∠А = ∠В = 45°, то △ABC - равнобедренный.
Т.к. CD Ʇ AB ⇒ CD - высота, проведённая к основанию равнобедренного тр-ка.
Высота, проведённая к основанию равнобедренного треугольника, является и медианой, и высотой.
⇒ высота CD - медиана равнобедренного △ABC.
Медиана, проведённая из прямого угла прямоугольного треугольника к гипотенузе, равна половине гипотенузы.
⇒ медиана CD в 2 раза меньше AB, т.е. AB = 14 (см).
Рассмотрим прямоугольный △PKF:
∠1 + ∠KPC = 180˚, т.к. они смежные ⇒ ∠KPC = 180˚ - 150˚ = 30˚.
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет KE в 2 раза меньше РЕ, т.е. РЕ = 20 (см).
⇒ ∠PKC = 90˚ - 30˚ = 60˚.
Т.к. ∠PKC = 60˚, а ∠PKE = 90˚ ⇒ ∠CKE = 90˚ - 60˚ = 30˚.
⇒ катет CE в 2 раза меньше KE, т.е. CE = 5 (см).
Т.к. PE = 20 (см), а СЕ = 5 (см), то СР = 20 - 5 = 15 (см).
Пусть отрезок, делящий △ABC на два других будет называться BD.
1. Рассмотрим прямоугольный △DBC:
⇒ ∠DBC = 90˚ - 65˚ = 25˚.
2. Рассмотрим прямоугольный △ABC:
Т.к. на рисунке ∠ABD = ∠DBC, то BD - биссектриса ∠ABC ⇒ ∠ABC = 50˚.
⇒ ∠CAB = 90˚ - 50˚ = 30˚.
1. РТ = 3,5 см
Объяснение:
1.
Из условия КМ - средняя линия трапеции ABCD
т.к. средняя линия в трапеции равна полусумме оснований то
КМ = (AD + BC)/2 = (8 + 2)/2 = 5 см
Теперь рассмотрим трапецию КМВС
РТ - средняя линия трапеции КМВС ( из условия)
значит
РТ = (КМ + ВС)/2 = (5 + 2)/2 = 7/2 = 3,5 см
2.
KL = EL - EK
т.к. EF - средняя линия трапеции ABCD
то EK - средняя линия ΔABC, а EL - средняя линия ΔABD
тогда
EK = a/2 и EL = b/2
KL = EL - EK подставляем
KL = b/2 - a/2 = (b-a)/2
KL = (b-a)/2
Рассмотрим прямоугольный △ABC:
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠А = 90° - 45° = 45°.
Т.к. ∠А = ∠В = 45°, то △ABC - равнобедренный.
Т.к. CD Ʇ AB ⇒ CD - высота, проведённая к основанию равнобедренного тр-ка.
Высота, проведённая к основанию равнобедренного треугольника, является и медианой, и высотой.
⇒ высота CD - медиана равнобедренного △ABC.
Медиана, проведённая из прямого угла прямоугольного треугольника к гипотенузе, равна половине гипотенузы.
⇒ медиана CD в 2 раза меньше AB, т.е. AB = 14 (см).
ответ: АВ = 14 (см).Задача #2.Рассмотрим прямоугольный △PKF:
∠1 + ∠KPC = 180˚, т.к. они смежные ⇒ ∠KPC = 180˚ - 150˚ = 30˚.
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет KE в 2 раза меньше РЕ, т.е. РЕ = 20 (см).
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠PKC = 90˚ - 30˚ = 60˚.
Т.к. ∠PKC = 60˚, а ∠PKE = 90˚ ⇒ ∠CKE = 90˚ - 60˚ = 30˚.
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет CE в 2 раза меньше KE, т.е. CE = 5 (см).
Т.к. PE = 20 (см), а СЕ = 5 (см), то СР = 20 - 5 = 15 (см).
ответ: CE = 5 (см); CP = 15 (см).Задача #3.Пусть отрезок, делящий △ABC на два других будет называться BD.
1. Рассмотрим прямоугольный △DBC:
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠DBC = 90˚ - 65˚ = 25˚.
2. Рассмотрим прямоугольный △ABC:
Т.к. на рисунке ∠ABD = ∠DBC, то BD - биссектриса ∠ABC ⇒ ∠ABC = 50˚.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠CAB = 90˚ - 50˚ = 30˚.
ответ: ∠CAB = 30˚.