№ 3. Из точки А, лежащей на расстоянии 25 см от центра окружности радиуса 15 см, проведена касательная, точка Р – точка касания. Найдите АР. А) 10 см В) 30 см С) 20 см
Пусть точка С расположена между точками D и Е, то есть С ближняя к точке Е, а В дальняя от точки Е вершины треугольника АВС. Угол АВС - вписанный в окружность, он измеряется половиной дуги АС. Угол ЕАС - угол между хордой и касательной, он тоже измеряется половиной дуги АС. Значит (угол ЕАС) =(угол АВС) . Так, как АD биссектриса угла ВАС, то (угол ВАD)=(угол DАС) . (Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.
Срединный перпендикуляр диагонали АС прямоугольника АВСD пересекает сторону ВС и образует с ней угол, равный углу между диагоналями. Найдите этот угол.
Срединный перпендикуляр проведен к точке пересечения диагоналей, которая делит их пополам.
Обозначим его ОК.
Треугольник КОС - прямоугольный.
Боковые стороны треугольника СОD образованы равными половинами диагоналей, следовательно, он - равнобедренный.
Проведем в нем высоту ОМ, она же – биссектриса ( свойство равнобедренного треугольника) и делит угол COD пополам.
ОМ║КС ( углы КСМ=ОМС=90°)
∠ МОС=∠ОСК - накрестлежащие при пересечении параллельных прямых секущей. .
Но угол МОС - половина угла СОD, который равен углу СКО.
(Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.
Срединный перпендикуляр диагонали АС прямоугольника АВСD пересекает сторону ВС и образует с ней угол, равный углу между диагоналями. Найдите этот угол.
Срединный перпендикуляр проведен к точке пересечения диагоналей, которая делит их пополам.
Обозначим его ОК.
Треугольник КОС - прямоугольный.
Боковые стороны треугольника СОD образованы равными половинами диагоналей, следовательно, он - равнобедренный.
Проведем в нем высоту ОМ, она же – биссектриса ( свойство равнобедренного треугольника) и делит угол COD пополам.
ОМ║КС ( углы КСМ=ОМС=90°)
∠ МОС=∠ОСК - накрестлежащие при пересечении параллельных прямых секущей. .
Но угол МОС - половина угла СОD, который равен углу СКО.
Следовательно, ∠КОС=2 ∠КСО.
Сумма углов прямоугольного треугольника равна 90°
Угол КСО=2 КСО=90°
∠КСО=90°: 3=30°
∠ СКО=60°