3. Может ли один из смежных углов быть прямым, а дру- гой — тупым?
4. Найдите все неразвёрнутые углы, образовавшиеся при
пересечении двух прямых, если сумма двух из них рав-
на 140°.
5. Биссектриса угла, смежного суглом в 80°, делит его на
два угла, каждый из которых равен
6. Может ли разность градусных мер двух смежных углов
быть равна 90°?
7. Угол АОС равен 120°. Луч ов расположен во внутрен-
ней области этого угла. Чему равен угол между биссек-
трисами углов АОВ и Вос?
Обозначим точки касания сторон АВ и ВС окружности – точки О и М соответственно.
Отрезки касательных, проведённых из одной точки к окружности, равны.
Следовательно: АО=АК=5 см, СМ=СК=3 см, ВО=ВМ.
Р(∆АВС)=АВ+ВС+АС= (АО+ОВ)+(ВМ+МС)+(АК+КС)= 5+ОВ+ВМ+3+5+3= 16+ОВ+ВМ
Р(∆АВС)=20 см по условию, тогда:
16+ОВ+ВМ=20
ОВ+ВМ=4
ОВ=2 см, ВМ=2 см.
Исходя из этого:
АВ=АО+ОВ=5+2=7 см
ВС=ВМ+МС=2+3=5 см
АС=АК+КС=5+3=8 см.
Проверим по следствиям теоремы Пифагора:
Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Если квадрат большей стороны больше суммы квадратов двух других сторон, то треугольник тупоугольный.
Если квадрат большей стороны меньше суммы квадратов двух других сторон, то треугольник остроугольный.
АВ²=7²=49, ВС²=5²=25, АС²=8²=64
64<49+25
64<74
Верно, следовательно ∆АВС – остроугольный.
ответ: остроугольный.
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "