В обеих задачах один из углов в треугольнике = 120°. Этот угол не может быть углом при основании равнобедренного Δ, так как эти углы должны быть равными, и их сумма будет равна 240°, что больше, чем 180°. Значит угол в 120° - это угол при вершине. Углы при основании будут равны (180°-120°):3=30° 1) Опустим высоту из вершины А на бок. сторону ВС (АС - основание равнобедренного ΔАВС), получим точку Н. Она будет лежать на продолжении стороны ВС, т.к. ∠В=120° - тупой. Рассм. ΔАНС: ∠АНС=90°, ∠АСН=30° ⇒ АН - катет, лежащий против угла в 30°, равен половине гипотенузы. Гипотенузой является АС=18 см. АН=18:2=9 (см)
2) В этой задаче всё аналогично, чертёж такой же, только известно не АС, а АВ=ВС=14. Чтобы найти высоту АН, как катет, лежащий против угла в 30° в ΔАНС, надо вычислить длину основания АС в равнобедренном ΔАВС ( АС является гипотенузой в ΔАНС) . Теорема косинусов: АС²=АВ²+ВС²-2·АВ·ВС·сos120°=14²+14²-2·14·14·cos(90°+30°)= =2·14²-2·14²·(-cos30°)=2·14²·(1+√3/2)=2·14²·(2+√2)/2=14²·(2+√3)
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
Значит угол в 120° - это угол при вершине.
Углы при основании будут равны (180°-120°):3=30°
1) Опустим высоту из вершины А на бок. сторону ВС (АС - основание равнобедренного ΔАВС), получим точку Н. Она будет лежать на продолжении стороны ВС, т.к. ∠В=120° - тупой.
Рассм. ΔАНС: ∠АНС=90°, ∠АСН=30° ⇒ АН - катет, лежащий против угла в 30°, равен половине гипотенузы. Гипотенузой является АС=18 см.
АН=18:2=9 (см)
2) В этой задаче всё аналогично, чертёж такой же, только известно не АС, а АВ=ВС=14.
Чтобы найти высоту АН, как катет, лежащий против угла в 30° в ΔАНС, надо вычислить длину основания АС в равнобедренном ΔАВС
( АС является гипотенузой в ΔАНС) .
Теорема косинусов:
АС²=АВ²+ВС²-2·АВ·ВС·сos120°=14²+14²-2·14·14·cos(90°+30°)=
=2·14²-2·14²·(-cos30°)=2·14²·(1+√3/2)=2·14²·(2+√2)/2=14²·(2+√3)
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
ответ: Длина хорды СМ равна 8 см.
Объяснение: