3.( )На рисунке прямые a и b перпендикулярны, ⦟1 в 5 раз больше⦟2. Найдите углы 1,2, 3 и 4. 4.( )На прямой отложены два равных отрезка АС и СВ. На отрезке СВ взята точка D, которая делит его в отношении 4:5, считая от точки С. Найдите расстояние между серединами отрезков АС и DВ, если CD=12 см.
5.( ) От стороны развернутого ⦟ АОВ в разные полуплоскости отложены ⦟АОК = 800
и ⦟АОЕ = 600. Найдите угол между биссектрисами углов ⦟КОВ и ⦟ЕОВ.
Чертим пирамиду, диагонали основания (АС) и (ВD), высоту пирамиды SO. О - точка пересечения (АС) и (ВD) и центр квадрата АВСD. Треугольник АSC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), AO=OC=OS=sqrt(2)/2. Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO. Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO.
Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.