Обозначим стороны прямоугольного треугольника A, B и C, с прямым углом C, и биссектрису CH. По условию BH=30, и AH=40, поэтому найдём гипотенузу AB: AB=BH+AH=30+40=70. По теореме о биссектрисе BH/AH=BC/AC=30/40.То есть, сторона BC имеет 30 пропорций, а сторона AC-40 пропорций. Обозначив коэффициент за x, по теореме Пифагора найдём его: (30x)^2+(40x)^2=70^2;900x^2+1600x^2=4900;2500x^2=4900;x^2=1.96;отсюда x=1.4. Теперь найдём стороны треугольника BC и ACё,: BC=30x=30*1,4=42; AC=40x=40*1.4=56. Далее, площадь прямоугольнго треугольника равна половине произведения катетов, и поэтому площадь треугольника ABC=BC*AC/2;42*56/2=1176.
Из рис.1 видим, что BD-биссектриса, значит ∠ADB=∠BDC. А ∠CBD=∠ADB как вертикальные. Поэтому углы BDC и CBD равны между собой. Значит треугольник BCD-равнобедренный, то есть BC=CD. Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см). Площадь трапеции равна S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)
Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см).
Площадь трапеции равна
S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)