Для удобства чтения, запоминания и записи каждая цифра в числе имеет свое место. Цифры в числе разбивают на так называемые классы: справа отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Каждая из цифр класса называется его разрядом. Разряды считаются справа налево, начиная с первого разряда - единицы, второй разряд - десятки, третий разряд - сотни, четвертый разряд - единицы тысяч и т.д. Тогда, чтобы применялось равенство 9:3=3 при делении десятков и единиц числа на 3, число десятков и единиц должно быть равно 9. Тогда заданное трехзначное число можно записать в виде: 199; 299; 399; 499; 599; 699; 799; 899; 999
43 и 259 -члены данной арифметической прогрессии;
2033 - не является членом данной арифметической прогрессии
Объяснение:
a₁ = 3; d = 8;
Решаем задачу, используя формулу для n-ого члена арифметической прогрессии.
аₙ = а₁ + d(n - 1)
1) Пусть аₙ = 43, тогда
43 = 3 + 8(n - 1)
40 = 8n - 8
48 = 8n
n = 6
43 - это 6-й член заданной арифметической прогрессии
2) Пусть аₙ = 259, тогда
259 = 3 + 8(n - 1)
256 = 8n - 8
264 = 8n
n = 33
259 - это 33-й член заданной арифметической прогрессии
3) Пусть аₙ = 2033, тогда
2033 = 3 + 8(n - 1)
2030 = 8n - 8
2038 = 8n
n = 254,75
Поскольку n не является целым числом, то 2033 не является членом заданной арифметической прогрессии