R - середина MN по условию, значит если NR=2, то MN=2*2=4см.
Рассмотрим △MNQ. В нём RS - средняя линия, т.к. R - середина MN по условию, S - точка пересечения диагоналей, а точка пересечения диагоналей параллелограмма делит их пополам. Значит по свойству средней линии треугольника, RS ll MQ. Значит, продолжая отрезок RS до точки L пересечения с PQ мы получим параллелограмм MRLQ (по свойству, что в параллелограмме противоположные стороны попарно параллельны) => MQ=RL.
△MNQ=△PQN по свойству диагонали, значит и средние линии их равны, т.е. RS=SL. => MQ=2*RS=2*5=10 см
обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 45 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 47 (см²)
S(АВС)*((25/16) - 1) = 45 (см²)
S(АВС)*(9/16) = 45
S(АВС) = 27*16/9 = 3*16 = 48 (см²)
Не уверена, что все правильно, но я пыталась
28 см
Объяснение:
R - середина MN по условию, значит если NR=2, то MN=2*2=4см.
Рассмотрим △MNQ. В нём RS - средняя линия, т.к. R - середина MN по условию, S - точка пересечения диагоналей, а точка пересечения диагоналей параллелограмма делит их пополам. Значит по свойству средней линии треугольника, RS ll MQ. Значит, продолжая отрезок RS до точки L пересечения с PQ мы получим параллелограмм MRLQ (по свойству, что в параллелограмме противоположные стороны попарно параллельны) => MQ=RL.
△MNQ=△PQN по свойству диагонали, значит и средние линии их равны, т.е. RS=SL. => MQ=2*RS=2*5=10 см
P=2*MN+2*MQ=2*4+2*10=28 см