3.Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из этих углов равен 29 градусов. С чертежом и с полным решением!
Дано: ΔABC, т. M ∈ AC (AM = CM), т. K ∈ BC, т. N ∈ AB;
MK || AB, KN || AC, BK = 31 см, MC = 27 см, BN = 26 см.
Найти: .
Решение. Сразу найдем сторону AС. ВМ - медиана ⇒ AС = 2МС = 54 см.
Докажем, что NK - средняя линия треугольника АВС.
Поскольку MK || AB и KN || AC, то четырехугольник AMKN - параллелограмм. А это значит, что NK = AM = 1/2 AC = 27 см ⇒ NK - средняя линия треугольника по определению ⇒ BN = AN = 26 см, BK = KC = 31 см.
Ищем периметр: = AN + NK + KC + AC = 26 + 27 + 31 + 54 = 138 см.
Дан куб A…D1 с ребром a. Найдите угол между плоскостью AB1 D1 и плоскостью диагонального сечения грани BDD1 B1 . Тема: двугранный угол.
Объяснение:
Определим двугранный угол между плоскостями AB₁D₁и BDD₁B₁. Эти плоскости пересекаются по прямой D₁B₁. Найдем два перпендикуляра к этой прямой , выходящие из одной точки.
Пусть О₁и О- точки пересечения диагоналей верхней и нижней граней соответственно . Тогда D₁О=ОB₁. Значит медиана АО ,в равнобедренном ΔAB₁D₁, является высотой ⇒АО₁⊥B₁D₁,
О₁О║В₁В ⇒О₁О⊥B₁D₁. Поэтому ∠АО₁О-линейный угол данного двугранного.
Объяснение: рисунок к задаче прилагаю.
Дано: ΔABC, т. M ∈ AC (AM = CM), т. K ∈ BC, т. N ∈ AB;
MK || AB, KN || AC, BK = 31 см, MC = 27 см, BN = 26 см.
Найти: .
Решение. Сразу найдем сторону AС. ВМ - медиана ⇒ AС = 2МС = 54 см.
Докажем, что NK - средняя линия треугольника АВС.
Поскольку MK || AB и KN || AC, то четырехугольник AMKN - параллелограмм. А это значит, что NK = AM = 1/2 AC = 27 см ⇒ NK - средняя линия треугольника по определению ⇒ BN = AN = 26 см, BK = KC = 31 см.
Ищем периметр: = AN + NK + KC + AC = 26 + 27 + 31 + 54 = 138 см.
ОТВЕТ: 138.
Дан куб A…D1 с ребром a. Найдите угол между плоскостью AB1 D1 и плоскостью диагонального сечения грани BDD1 B1 . Тема: двугранный угол.
Объяснение:
Определим двугранный угол между плоскостями AB₁D₁и BDD₁B₁. Эти плоскости пересекаются по прямой D₁B₁. Найдем два перпендикуляра к этой прямой , выходящие из одной точки.
Пусть О₁и О- точки пересечения диагоналей верхней и нижней граней соответственно . Тогда D₁О=ОB₁. Значит медиана АО ,в равнобедренном ΔAB₁D₁, является высотой ⇒АО₁⊥B₁D₁,
О₁О║В₁В ⇒О₁О⊥B₁D₁. Поэтому ∠АО₁О-линейный угол данного двугранного.
ΔАО₁О-прямоугольный , tg (∠АО₁О)=АО/О₁О , tg (∠АО₁О)=/
∠АО₁О=arctg
====================================================
1)Диагонали любой грани куба равны и находятся по т. Пифагора √(а²+а²)=√2а²=а√2 . Половина диагонали равна(а√2) /2
2)ΔAB₁D₁, -равнобедренном, т.к. В₁А=АD.