ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-AD
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.ответ:Угол DFA=108°.
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектриса
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-AD
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.ответ:Угол DFA=108°.
50
Объяснение:
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
S BDM = BD*OM =