3. Один из внешних углов треугольника равен 48 градусам. Углы, не смежные с данным внешним углом, относятся как 1:2. Найдите наибольший из них.(З ВОПРОС,НУЖЕН ЧЕРТЕЖ)
3 см. Объяснение : центр окружности находится на пересечении серединных перпендикуляров. У равнобедренного треугольника биссектриса и медиана это одна линия. По теореме Пифагора узнаем что в новом прямоугольном треугольнике , образованном биссектрисой , корень из гипотенузы в квадрате минус восемь в квадрате будет 6. Маленький треугольник образованный биссектрисой и серединным перпендикуляров боковой стороны подобен большому , в два раза меньше его , потому что гипотенуза первого 10 , а Второго 5. Следовательно катер равен з.
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)
ADBE, ADCG
Объяснение:
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)