Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
Стороны ромба содержатся в четырех прямых: АВ, ВС, СD и АD. Расстояние от М до ВС и СD равно МС=7 см, т.к. расстояние от точки до прямой - перпендикуляр, а по условию МС ⊥ плоскости ромба. Расстояние от М до прямой, содержащей сторону АD, равно наклонной МН, проведенной перпендикулярно к этой прямой. Длину ее найдем из прямоугольного треугольника МСН, в котором НС равна и параллельна высоте ромба. Угол СDН=углу А=45° СН=СD*sin (45°)=(8*√2):2=4√2 см МН=√(МС+СН)=√(32+49)=9 см Точно таким же будет расстояние до прямой, содержащей сторону АВ, т.к. все стороны ромба и соответственные углы при параллельных сторонах равны. ответ: 7 см до ВС и СD, и 9 см до АВ и АD
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3
АВ, ВС, СD и АD.
Расстояние от М до ВС и СD равно МС=7 см, т.к. расстояние от точки до прямой - перпендикуляр, а по условию МС ⊥ плоскости ромба.
Расстояние от М до прямой, содержащей сторону АD, равно наклонной МН, проведенной перпендикулярно к этой прямой.
Длину ее найдем из прямоугольного треугольника МСН, в котором НС равна и параллельна высоте ромба.
Угол СDН=углу А=45°
СН=СD*sin (45°)=(8*√2):2=4√2 см
МН=√(МС+СН)=√(32+49)=9 см
Точно таким же будет расстояние до прямой, содержащей сторону АВ, т.к. все стороны ромба и соответственные углы при параллельных сторонах равны.
ответ: 7 см до ВС и СD, и 9 см до АВ и АD