3. Основа прямої призми — рівнобедрений трикутник з кутом β (β < 90°) при вершині. Діагональ грані, яка проходить через бічну сторону трикутника, дорівнює а і нахилена до площини основи під кутом α. Знайдіть бічну поверхню циліндра, вписаного в дану призму.
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Объяснение:
Вроде так...
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Объяснение:
Вроде так...