АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
2ообщая сторона,угол(90 градусов), а другой прилежащий угол в первом это - 90- 3 угол, а в другом тоже самое( или же используй признаки прямоугольного треугольника ).
3)угол(90), сторона, и ещё угол(вертикальные).
Объяснение:
Здесь второй вариант:
1)общая сторона, сторона, теперь нам нужен ещё один прилежаний угол(используй признак прямоугольного треугольника, но я покажу свой): это 180-90- известный угол, в другом треугольнике этот же угол такой же ( ведь углы равны),поэтому ЧТД(доказано).
2)антологичного , как в другом варианте(3 номер)
3)общая сторона,угол, находим прилежащий(как в задачах). Все. Есть вопросы, спрашивай, обязательно отвечу.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
ответ:1) общая сторона, сторона, угол между ними
2ообщая сторона,угол(90 градусов), а другой прилежащий угол в первом это - 90- 3 угол, а в другом тоже самое( или же используй признаки прямоугольного треугольника ).
3)угол(90), сторона, и ещё угол(вертикальные).
Объяснение:
Здесь второй вариант:
1)общая сторона, сторона, теперь нам нужен ещё один прилежаний угол(используй признак прямоугольного треугольника, но я покажу свой): это 180-90- известный угол, в другом треугольнике этот же угол такой же ( ведь углы равны),поэтому ЧТД(доказано).
2)антологичного , как в другом варианте(3 номер)
3)общая сторона,угол, находим прилежащий(как в задачах). Все. Есть вопросы, спрашивай, обязательно отвечу.