Отложим все отрезки и соединим точки А, L,Е одной прямой. Рассмотрим треугольники LFE и KFM. У них углы KFM и LFE равны , LF=FM, KF=FE(по условию). Следовательно эти треугольники равны. Против равных углов в треугольнике лежат равные стороны и наоборот. Отсюда угол LEF=углуFKM. Значит LE параллельна КМ. Аналогично доказываем параллельность AL и KM (трекгольники ALD и KDM). То есть получили - отрезки AL и EL параллельны одной прямой KM, и точка L у них общая. Значит отрезки AL и LE являются отрезками одной прямой АЕ и точка L лежит на ней. Поскольку через три точки можно провести прямую если только они все лежат на этой прямой.
Ромб ABCD, точка пересечения диагоналей О, К - точка на стороне АВ. АК=2 ВК=8 1- рассмотрим прямоугольный треугольник AOB. У него АВ=10см (т.к. АК+ВК=2+8=10). А катеты АО и ВО примем АО=х, ВО= у 2- из теоремы пифагора (квадрат гипотенузы (АВ^2) равен сумме квадратов катетов (АО^2+ВО^2)) ( X)^2 означает X в квадрате т.е. АВ^2=AO^2+BO^2. подставим нашу замену получим 10^2=x^2+y^2, 100=x^2+y^2 3- рассмотрим прямоугольный треугольник AOK. Его стороны это АК=2, ОК и АО=x в нем тоже по теореме пифагора получаем: AO^2=AK^2+OK^2, подставим значения получим x^2 = 2^2 + OK^2 x^2 = 4 + OK^2 4- рассмотрим прямоугольный треугольник BOK. Его стороны это BК=8, ОК и BО=y в нем тоже по теореме пифагора получаем: BO^2=BK^2+OK^2, подставим значения получим y^2 = 8^2 + OK^2 y^2 =64 + OK^2
Рассмотрим уравнения из пункта 3 и 4 x^2 = 4 + OK^2 y^2 =64 + OK^2 Выразим из каждого OK^2, получим OK^2=x^2-4 OK^2=y^2-64 получаем x^2-4=y^2-64 x^2=y^2-60 Решим теперь систему уравнений x^2=y^2-60 100=x^2+y^2 (уравнение из пункта 2) Подставим полученное x^2 в уравнение из пункта 1, получим систему x^2=y^2-60 100=y^2-60+y^2
x^2=y^2-60 2*y^2=160
x^2=y^2-60 y^2=80 Теперь подставим y^2=80 в первое уравнение системы, получим систему
x^2=80-60 y^2=80
x^2=20 y^2=80 __ x=2 V 5 (два корня из пяти) __ y=4 V 5 (четыре корня из пяти)
ответ: __ __ __ __ Диагонали ромба это АС=2*x = 2*2 V 5 = 4V 5 и BD=2*y= 2*4 V 5 = 8 V 5
Отложим все отрезки и соединим точки А, L,Е одной прямой. Рассмотрим треугольники LFE и KFM. У них углы KFM и LFE равны , LF=FM, KF=FE(по условию). Следовательно эти треугольники равны. Против равных углов в треугольнике лежат равные стороны и наоборот. Отсюда угол LEF=углуFKM. Значит LE параллельна КМ. Аналогично доказываем параллельность AL и KM (трекгольники ALD и KDM). То есть получили - отрезки AL и EL параллельны одной прямой KM, и точка L у них общая. Значит отрезки AL и LE являются отрезками одной прямой АЕ и точка L лежит на ней. Поскольку через три точки можно провести прямую если только они все лежат на этой прямой.
Ромб ABCD, точка пересечения диагоналей О, К - точка на стороне АВ.
АК=2
ВК=8
1- рассмотрим прямоугольный треугольник AOB. У него АВ=10см (т.к. АК+ВК=2+8=10). А катеты АО и ВО примем АО=х, ВО= у
2- из теоремы пифагора (квадрат гипотенузы (АВ^2) равен сумме квадратов катетов (АО^2+ВО^2)) ( X)^2 означает X в квадрате
т.е. АВ^2=AO^2+BO^2. подставим нашу замену получим 10^2=x^2+y^2, 100=x^2+y^2
3- рассмотрим прямоугольный треугольник AOK. Его стороны это АК=2, ОК и АО=x
в нем тоже по теореме пифагора получаем: AO^2=AK^2+OK^2, подставим значения получим x^2 = 2^2 + OK^2 x^2 = 4 + OK^2
4- рассмотрим прямоугольный треугольник BOK. Его стороны это BК=8, ОК и BО=y
в нем тоже по теореме пифагора получаем: BO^2=BK^2+OK^2, подставим значения получим y^2 = 8^2 + OK^2 y^2 =64 + OK^2
Рассмотрим уравнения из пункта 3 и 4
x^2 = 4 + OK^2
y^2 =64 + OK^2
Выразим из каждого OK^2, получим
OK^2=x^2-4
OK^2=y^2-64
получаем
x^2-4=y^2-64
x^2=y^2-60
Решим теперь систему уравнений
x^2=y^2-60
100=x^2+y^2 (уравнение из пункта 2)
Подставим полученное x^2 в уравнение из пункта 1, получим систему
x^2=y^2-60
100=y^2-60+y^2
x^2=y^2-60
2*y^2=160
x^2=y^2-60
y^2=80
Теперь подставим y^2=80 в первое уравнение системы, получим систему
x^2=80-60
y^2=80
x^2=20
y^2=80
__
x=2 V 5 (два корня из пяти)
__
y=4 V 5 (четыре корня из пяти)
ответ: __ __ __ __
Диагонали ромба это АС=2*x = 2*2 V 5 = 4V 5 и BD=2*y= 2*4 V 5 = 8 V 5