Пусть ABC - прямоугольный треугольник. AB u BC - катеты, AC - гипотенуза. Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30° Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2 BD - высота, опущенная на гипотенузу.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30°
Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2
BD - высота, опущенная на гипотенузу.
В прямоугольном треугольнике BCD:
СВD= 180 - 90 - 60 = 30°
BC - гипотенуза, СD u BD - катеты, причем СD противолежит углу 30° ⇒ CD = BC/2
По теореме Пифагора
BD² + CD² = BC²
4² + (BC/2)² = BC²
16 + BC²/4 = BC²
16 = 4BC²/4 - BC²/4
3BC²/4 = 16
3BC² = 64
BC² = 64/3
В прямоугольном треугольнике ABD:
AB - гипотенуза, AD u BD - катеты, причем BD противолежит углу 30° ⇒ AB = 2BD = 8
По теореме Пифагора
AB² + BC² = AC²
(2BD)² + 64/3 = AC²
(2 * 4)² + 64/3 = AC²
AC² = 64 + 64/3
AC² = 192/3 + 64/3
AC² = 256/3
AC=√(256/3)
AC = 16/√3
AC = 16√3 / 3 (cм)
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.