3. Прямая DB касается окружности, с центром Он радиусом OD-2, 8см, в точке D Чему равна длина отрезка OB, если 2 DOB-600 ММожет ли DB- OD, объяснить почему? СОЧ
Площадь основания по формуле Герона: S=√(p(p-a)(p-b)(p-c)). p=(a+b+c)/2=(2+3+3)/2=4. S=√(4(4-2)(4-3)(4-3))=√8=2√2.
Из одной из вершин верхнего основания призмы опустим высоту на нижнее основание. В прямоугольном треугольнике, образованном этой высотой, прилежащим боковым ребром и проекцией ребра на нижнее основание, острый угол по условию равен 45°, значит треугольник равнобедренный с гипотенузой 4 и высота призмы (катет треугольника) h=4/√2=2√2.
Объём призмы: Vп=Sh=2√2·2√2=8. Объём куба: Vк=а³ ⇒ а=∛Vк. По условию объёмы призмы и куба равны, значит ребро куба: а=∛8=2 - это ответ.
AD = 30
Объяснение:
Задание
На рисунке углы C и E равны 90°.
Найти АD, если известно, что АE = 18, , EC = 33, DB = 55.
Решение
1) Так как ВС и DE перпендикулярны АС, то ВС║DE, и треугольник АDE подобен треугольнику АВС.
2) Из подобия треугольников следует, что:
АС : АЕ = АВ : АD (1)
АС = АЕ + ЕС = 18 + 33 = 51
Пусть AD = х, тогда
АВ = DB+ AD = 55 + х
Тогда (1) можно представить в виде:
51 : 18 = (55+х) : х (2)
3) Согласно основному свойству пропорции, произведение средних равно произведению крайних, поэтому из (2) следует, что:
51 х = 18·55 + 18х
33х = 990
х = 990 : 33 = 30
AD = 30
ответ: AD = 30
p=(a+b+c)/2=(2+3+3)/2=4.
S=√(4(4-2)(4-3)(4-3))=√8=2√2.
Из одной из вершин верхнего основания призмы опустим высоту на нижнее основание. В прямоугольном треугольнике, образованном этой высотой, прилежащим боковым ребром и проекцией ребра на нижнее основание, острый угол по условию равен 45°, значит треугольник равнобедренный с гипотенузой 4 и высота призмы (катет треугольника) h=4/√2=2√2.
Объём призмы: Vп=Sh=2√2·2√2=8.
Объём куба: Vк=а³ ⇒ а=∛Vк.
По условию объёмы призмы и куба равны, значит ребро куба:
а=∛8=2 - это ответ.