3 реки — 1
549. Собственная скорость катера равна 15 км/ч, скорость течения
1
1 км/ч. Найдите скорость катера, плывущего по течению
2.
и против течения реки. На сколько километров длина пути, прой-
денного катером по течению за 3 ч, больше длины пути, пройден-
ного катером против течения реки за это же время?
2). За формулою (ВС+АД)/2=МН, де ВС-менша основа; АД-більша основа, а МН-середня лінія,то АД візьмемо за х, звідси маемо рівняння:
(6+х)/2=11
6+х=22
х=16см.-більша основа АД.
3). х-коєфіціент пропорційності. Звідси АД відноситься до МН, як 5:4, звідси АД=5х, а МН=4х.
Так, як МН більша за ВС на 5см, то МН= 4х+5, а ВС=4х-5см., за формулою (ВС+АД)/2=МН, то маемо рівняння:
(4х-5+5х)/2=4х+5
4х-5+5х=8х+10
9х-8х=15
х=15см.
Звідси ВС=4х-5=4*15-5=55см.; АД=5х=5*15=75см.
Відповідь:55см., 75см.
1).а).так; б).так.
Так, як середня лінія повинна бути меншою за її більшу основу, і більшою за її меншу основу.
3) Дано:
АВCD - ромб,
AC и BD - диагонали ромба,
О - точка пересечения диагоналей,
угол BCD = 104*
Найти углы ABO.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.